This course is designed to provide knowledge of key concepts,
methods, techniques, and tools of big data analytics from a
business perspective. Course contents will cover issues in
and aspects of collecting, storing, manipulating, transforming,
processing, analysing, visualizing, and reporting big data in order
to create business value. Course topics are listed below:
- Foundations: Concepts, Lifecycle, Challenges, Opportunities,
and Exemplary Cases
- Data: Types, Structures & Tokens
- Data Mining and Machine Learning: Algorithms & Tools
- Visual Analytics: Dashboards & Tools
- Text Analytics: Classification & Clustering
- Predictive Analytics: Correlation, Regression, and
Autometrics
- Computational Social Science: Social Set Analytics
- Applications: Private and Public Sectors
- Datafication: Security, Governance, Regulation, Privacy &
Ethics
|
Class #: Topic
|
Readings |
Class #01:
Philosophy:
Algorithms+DataStructures=Programs |
Daveport, T. (2014). 10 Kinds of Stories to
Tell with Data. Blog post at Harvard Business Review
http://blogs.hbr.org/2014/05/10-kinds-of-stories-to-tell-with-data/ |
Chapters 1-3 of Council, N.
(2013). Frontiers in massive data analysis: The National Academies
Press Washington, DC. |
Boyd, D., & Crawford, K.
(2012). Critical questions for big data: Provocations for a
cultural, technological, and scholarly phenomenon. Information,
communication & society, 15(5), 662-679. |
Tufekci, Z. (2014). Big
Questions for Social Media Big Data: Representativeness, Validity
and Other Methodological Pitfalls. Proceedings of the 8th
International Aaai Conference on Weblogs and Social Media(ICWSM)
2014, Ann Arbor, USA, June 2-4, 2014. |
Class #02: Data Mining-1 |
Chapters 4-6 of Council, N. (2013).
Frontiers in massive data analysis: The National Academies Press
Washington, DC.
Chapters 1-2 of Leskovec, J., Rajaraman, A., & Ullman, J. D.
(2014). Mining of massive datasets: Cambridge University
Press. |
Class #03: Visual
Analytics-1 |
Chapter 9 of Council, N. (2013). Frontiers
in massive data analysis: The National Academies Press Washington,
DC. |
Executive Summary Thomas, J.
J., & Cook, K. A. (Eds.). (2005). Illuminating the path: The
research and development agenda for visual analytics. IEEE Computer
Society Press. |
Heer, J., Bostock, M., &
Ogievetsky, V. (2010). A tour through the visualization zoo.
Commun. ACM, 53(6), 59-67. |
Class #04: Visual
Analytics-2 |
Fisher, D., DeLine, R., Czerwinski, M.,
& Drucker, S. (2012). Interactions with big data analytics.
interactions, 19(3), 50-59. |
Chapter 27 of Munzner, T.
(2009). Visualization. Fundamentals of Graphics, Third Edition. AK
Peters, 675-707. |
Class #05: Text Analytics-1 |
Chapters 1-4 of Aggarwal, C. C., &
Zhai, C. (2012). Mining text data: Springer Science & Business
Media.
Chapter 1-3 of Bird, S., Klein, E., & Loper, E. (2009). Natural
language processing with Python: " O'Reilly Media,
Inc. |
Class #06: Text Analytics-2 |
Chapter 10-11 of Aggarwal, C. C., &
Zhai, C. (2012). Mining text data: Springer Science & Business
Media.
Chapter 6-7 of Bird, S., Klein, E., & Loper, E. (2009). Natural
language processing with Python: " O'Reilly Media,
Inc. |
Class #07: Predictive
Analytics-1 |
Chapters 7-8 of Council, N. (2013). Frontiers in massive data
analysis: The National Academies Press Washington, DC. |
Chapters 1, 2, 4 & 5 of
Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting:
principles and practice: OTexts:
https://www.otexts.org/fpp/ |
Class #08: Predictive
Analytics-2 |
Chapters 4, 5, & 7 of Hyndman, R. J.,
& Athanasopoulos, G. (2014). Forecasting: principles and
practice: OTexts: https://www.otexts.org/fpp/ |
Chapter 4 of Milhoj, A. (2013). Practical
Time Series Analysis Using SAS: SAS Institute. |
Class #09: Predictive
Analytics-3 |
Chapter 8 of Hyndman, R. J., &
Athanasopoulos, G. (2014). Forecasting: principles and practice:
OTexts: https://www.otexts.org/fpp/ |
Chapter 7 of Milhoj, A. (2013). Practical
Time Series Analysis Using SAS: SAS Institute. |
Class #10: Data Mining-2 |
Chapters 3, 10-11 of Council, N. (2013).
Frontiers in massive data analysis: The National Academies Press
Washington, DC.
Chapters 3 & 6 of Leskovec, J., Rajaraman, A., & Ullman, J.
D. (2014). Mining of massive datasets: Cambridge University
Press. |
Class #11: Practical
Applications |
Chapter 12 of Saxena, R. & Srinivasan,
A. 2013. Business Analytics: A Practitioner's Guide, Springer
New York. |
Chapters 8-9 of Leskovec, J.,
Rajaraman, A., & Ullman, J. D. (2014). Mining of massive
datasets: Cambridge University Press. |
Sheridan, J., & Tennison,
J. (2010, April). Linking UK Government Data. In LDOW. |
Slobogin, C. (2008).
Government data mining and the fourth amendment. The University of
Chicago Law Review,
317-341. |
|