English   Danish

2019/2020  KAN-CINTO1014U  Internet of Things

English Title
Internet of Things

Course information

Language English
Course ECTS 7.5 ECTS
Type Mandatory offered as elective
Level Full Degree Master
Duration One Semester
Start time of the course Spring
Timetable Course schedule will be posted at calendar.cbs.dk
Study board
Study Board for BSc/MSc in Business Administration and Information Systems, MSc
Course coordinator
  • Ben Eaton - Department of Digitalisation
Main academic disciplines
  • Information technology
Teaching methods
  • Face-to-face teaching
Last updated on 30-03-2020

Relevant links

Learning objectives
  • Understand strategic commercial drivers including IoT business ecosystems and business models
  • Understand the main technical concepts, models, and frameworks of the Internet of Things
  • Evaluate selected technical, ethical, privacy, and security issues related to the Internet of Things
  • Analyse, using different Internet of Things frameworks: Strategic and operational implications, user centered design, and technical challenges in particular related to form and function (of embedded, pervasive, and ubiquitous systems)
  • Assess pros/cons of different Internet of Things technologies and their applications
  • Design/develop (parts of) a technical Internet of Things solution such as an embedded data mining algorithm and/or hardware platform to solve a given relevant problem
Course prerequisites
Prior knowledge and understanding of the following is advantageous:
• Programming
• Distributed computing systems
• Technologies such as IP, HTTP, XML and JSON
• Data mining and big data algorithms
Internet of Things:
Exam ECTS 7,5
Examination form Home assignment - written product
Individual or group exam Individual exam
Size of written product Max. 15 pages
Assignment type Project
Duration Written product to be submitted on specified date and time.
Grading scale 7-point grading scale
Examiner(s) Internal examiner and second internal examiner
Exam period Spring
Make-up exam/re-exam
Same examination form as the ordinary exam
Description of the exam procedure

In addition to the home assignmet, the students should upload a short video (max 5 minutes) demonstrating the IoT artefact that they have constructed.

Course content, structure and pedagogical approach

Main aim of the course
The basic technical idea of the Internet of Things is that virtually every physical thing in this world can also become a small computer that is connected to the Internet. When they do so, they are often called 'smart things', and these smart things use embedded data mining to achieve their goals. Students will gain advanced technical knowledge of key theories, algorithms, models, frameworks, and technical solutions of the Internet of Things. In business, the Internet of Things can also create new business models, improve business processes, enhance supply chains, and reduce costs and risks.  The student  will acquire specialised problem-solving technical skills, being able to analyse and design new solutions based on Internet of Things technology. They shall take responsibility to conduct design and implementation of new Internet of Things solutions both on the hardware side and on the software side.

Technology, tools, and platforms
Internet of Things involve a number of different technologies: Programming, RFID, NFC tags, Bluetooth devices, proximity/touch/temperature/light sensors, IPv6 network, Zigbee etc.

Description of the teaching methods
Classroom teaching.
Feedback during the teaching period
Office hours: Office hours will provide feedback to all the students who will discuss some aspects of the material in more depth.

After class: In continuation of the class there is also the possibility of discussing with the teacher to get feedback on both the material and the semester assignment.

Workshop: The class features a large workshop where the students get a lot of feedback from the teacher. This workshop also allows some students to present to the rest of the class for peers feedback.

Mail: Students can (and do) send e-mail with questions and drafts of their assignments during the semester to get quick feedback on key questions or concerns.
Student workload
Lectures 24 hours
Prepare to class 100 hours
Workshops 19 hours
Exam and prepare 63 hours
Total 206 hours
Expected literature

The literature can be changed before the semester starts. Students are advised to find the final literature on Canvas before they buy the books.


Selected Chapters from the Following Literature (finalized on CBS Learn before the class starts):


  • Uckelmann, D., Harrison, M., & Michahelles, F. (2011). Architecting the Internet of Things, Springer.
  • Pedersen, R. U. & Pedersen, M. K. (2013). Micro Information Systems: New Fractals in an Evolving IS Landscape, IDG Global.
  • Chun-Wei Tsai, Chin-Feng Lai , Ming-Chao Chiang, Laurence T. Yang (2013) Data Mining for Internet of Things: A Survey, IEEE Communications Surveys & Tutorials, (16)1.
  • Coulouris, G., Dollimore, J., & Kindberg, T. (2011) Distributed Systems: Concepts and Design, 5th edition,  Chapter 19, Addison-Wesley
  • Other articles that supplement the main coursebook

Optional Reading List (finalized on CBS Learn before the class starts):


  • Porter, M. & Heppelmann, J. (2015). How smart, conected products are transforming industry. Harvard Business Review
  • Porter, M. & Heppelmann, J. (2014). How smart, connected products are transforming competition. Harvard Business Review
  • Students will also select additional litterature (approx. 10-20 academic articles) for their individual semester assignments.


Last updated on 30-03-2020