Selected Literature (Changes might occur)
Chapters 1 & 2 of
Ohlhorst, F. J. (2012). Big Data Analytics: Turning Big Data Into
Big Money. John Wiley & Sons. |
Floyer, D. & Vellante, D.
(2013). Enterprise Big Data. |
Daveport, T. (2014). 10 Kinds
of Stories to Tell with Data. Blog post at Harvard Business Review
http://blogs.hbr.org/2014/05/10-kinds-of-stories-to-tell-with-data/ |
Boyd, D., & Crawford, K.
(2011). Six provocations for big data. |
Warden, P. (2011). Big Data
Glossary. O'Reilly Media, Inc.. |
Wikipedia. (2014). Data
Structure. http://en.wikipedia.org/wiki/Data_structure |
Wikipedia. (2014). List of
Data Structures.
http://en.wikipedia.org/wiki/List_of_data_structures |
On-line Library of Information
Visualization Environments. (2014).
http://lte-projects.umd.edu/Olive/ |
Vatrapu, R. (2013).
Understanding Social Business. In K. B. Akhilesh (Ed.), Emerging
Dimensions of Technology Management (pp. 147-158). New Delhi:
Springer. |
Robertson, S., Vatrapu, R.,
& Medina, R. (2010). Off the wall political discourse: Facebook
use in the 2008 U.S. presidential election. Information Polity,
15(1,2), 11-31. |
Hussain, A., Vatrapu, R.,
Hardt, D., & Jaffari, Z. (in press/2014). Social Data
Analytics Tool: A Demonstrative Case Study of Methodology and
Software. In Gibson, R., et al (eds). Digital Methods, Palgrave
Macmillan |
Mukkamala, R., Hussain, A.,
& Vatrapu, R. (2014). Fuzzy-Set Based Sentiment Analysis of Big
Social Data. Proceedings of IEEE EDOC 2014, Ulm, Germany. |
Hussain, A., & Vatrapu, R.
(2014). Social Data Analytics Tool: Social Data Analytics Tool:
Design, Development and Demonstrative Case Studies.Proceedings of
IEEE EDOC 2014, Ulm, Germany. |
Cha, M., Haddadi, H.,
Benevenuto, F., & Gummadi, P. K. (2010). Measuring User
Influence in Twitter: The Million Follower Fallacy. ICWSM, 10,
10-17. |
Asur, S., & Huberman, B.
A. (2010, August). Predicting the future with social media. In Web
Intelligence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on (Vol. 1, pp. 492-499).
IEEE. |
Lassen, N., Madsen, R., &
Vatrapu, R. (2014). Predicting iPhone Sales from iPhone Tweets.
Proceedings of IEEE EDOC 2014, Ulm, Germany. |
Romero, D. M., Galuba, W.,
Asur, S., & Huberman, B. A. (2011). Influence and passivity in
social media. In Machine learning and knowledge discovery in
databases (pp. 18-33). Springer Berlin Heidelberg. |
Chapter 27 of
Munzner, T. (2009). Visualization. Fundamentals of Graphics, Third
Edition. AK Peters, 675-707. |
|
Heer, J., Bostock, M., &
Ogievetsky, V. (2010). A tour through the visualization zoo.
Commun. ACM, 53(6), 59-67. |
Executive Summary Thomas, J.
J., & Cook, K. A. (Eds.). (2005). Illuminating the path: The
research and development agenda for visual analytics. IEEE Computer
Society Press. |
Fisher, D., DeLine, R.,
Czerwinski, M., & Drucker, S. (2012). Interactions with big
data analytics. interactions, 19(3), 50-59. |
Chris Zimmerman, Yuran Chen,
Daniel Hardt, and Ravi Vatrapu. 2014. Marius, the giraffe: a
comparative informatics case study of linguistic features of the
social media discourse. In Proceedings of the 5th ACM international
conference on Collaboration across boundaries: culture, distance
& technology (CABS '14). ACM, New York, NY, USA, 131-140.
DOI=10.1145/2631488.2631501
http://doi.acm.org/10.1145/2631488.2631501 |
Pang, B., & Lee, L.
(2008). Opinion Mining and Sentiment Analysis. Foundations and
Trends in Information Retrieval, 2(1-2), 1-135. |
Danescu-Niculescu-Mizil, C.,
Kossinets, G., Kleinberg, J., & Lee, L. (2009). How opinions
are received by online communities: a case study on amazon. com
helpfulness votes. Proceedings of the 18th international conference
on World wide web, 141-150. |
Thomas, M., Pang, B., &
Lee, L. (2006). Get out the vote: Determining support or opposition
from Congressional floor-debate transcripts. Proceedings of the
2006 conference on empirical methods in natural language
processing, 327-335. |
Taboada, M., Brooke, J.,
Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based
methods for sentiment analysis. Computational linguistics, 37(2),
267-307. |
Constant, N., Davis, C.,
Potts, C., & Schwarz, F. (2009). The pragmatics of expressive
content: Evidence from large corpora. Sprache und
Datenverarbeitung, 33(1-2), 5-21. |
Chen, H., Chiang, R. H., &
Storey, V. C. (2012). Business Intelligence and Analytics: From Big
Data to Big Impact. MIS Quarterly, 36(4), 1165-1188. |
Chapters 01, 07, 10 & 11
of Saxena, R. & Srinivasan, A. 2013. Business Analytics: A
Practitioner's Guide, Springer New York. |
Cohen, J., Dolan, B., Dunlap,
M., Hellerstein, J. M., & Welton, C. (2009). MAD skills: new
analysis practices for big data. Proceedings of the VLDB Endowment,
2(2), 1481-1492. |
Davenport, T. H. (2006).
Competing on analytics. harvard business review, 84(1),
98. |
Part Two on Probability from
Agresti, A., & Franklin, C. (2013). Statistics: The art and
science of learning from data. |
Hand, D. J. (1998). Data
mining: statistics and more?. The American Statistician, 52(2),
112-118. |
King, G. (1986). How not to
lie with statistics: Avoiding common mistakes in quantitative
political science. American Journal of Political Science,
666-687. |
Gigerenzer, G. (2004).
Mindless statistics. The Journal of Socio-Economics, 33(5),
587-606. |
Big Data Meets Big Data
Analytics. SAS Whitepaper |
Jacobs, A. (2009). The
pathologies of big data. Communications of the ACM, 52(8),
36-44. |
Herodotou, H., Lim, H., Luo,
G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S. (2011).
Starfish: A Self-tuning System for Big Data Analytics. In CIDR
(Vol. 11, pp. 261-272). |
Chapters 1-2-3-4 of Zadrozny,
P., & Kodali, R. (2013). Big Data and Splunk. In Big Data
Analytics Using Splunk (pp. 1-7). Apress. |
Chapter 4 of Zikopoulos, P.,
& Eaton, C. (2011). Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media. |
Chapter 12 of Saxena, R.
& Srinivasan, A. 2013. Business Analytics: A Practitioner's
Guide, Springer New York. |
Sheridan, J., & Tennison,
J. (2010, April). Linking UK Government Data. In LDOW. |
Slobogin, C. (2008).
Government data mining and the fourth amendment. The University of
Chicago Law Review, 317-341. |
Davis, K. (2012). Ethics of
Big Data. O'Reilly. |
Craig, T., & Ludloff, M.
E. (2011). Privacy and big data. O'Reilly Media,
Inc.. |
Steinbrook, R. (2008).
Personally controlled online health data-the next big thing in
medical care?. New England Journal of Medicine, 358(16),
1653. |
|