2016/2017 BA-BINTV1051U Big Data Analytics for Managers
English Title | |
Big Data Analytics for Managers |
Course information |
|
Language | English |
Course ECTS | 7.5 ECTS |
Type | Elective |
Level | Bachelor |
Duration | One Semester |
Start time of the course | Autumn |
Timetable | Course schedule will be posted at calendar.cbs.dk |
Min. participants | 25 |
Study board |
Study Board for BSc/MSc in Business Administration and
Information Systems, BSc
|
Course coordinator | |
|
|
Niels Buus Lassen and Benjamin Flesh will teach the majority of the course | |
Main academic disciplines | |
|
|
Last updated on 13-04-2016 |
Learning objectives | |||||||||||||||||||||||||
To achieve the grade 12, students
should meet the following learning objectives with no or only minor
mistakes or errors:
|
|||||||||||||||||||||||||
Course prerequisites | |||||||||||||||||||||||||
None | |||||||||||||||||||||||||
Examination | |||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Course content and structure | |||||||||||||||||||||||||
This course is designed to provide knowledge of key concepts, methods, techniques, and tools of big data analytics from a managerial perspective. Course contents will cover issues in and aspects of collecting, storing, manipulating, transforming, processing, analysing, visualizing, and reporting big data in organisational settings to create business value.
Course topics are listed below:
|
|||||||||||||||||||||||||
Teaching methods | |||||||||||||||||||||||||
Online Screen Recorded Lectures
Online Assignments Tool Tutorials and Workshops Technical Support |
|||||||||||||||||||||||||
Student workload | |||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Expected literature | |||||||||||||||||||||||||
Selected Book Chapters: Council, N. (2013). Frontiers in massive data analysis: The National Academies Press Washington, DC.
Thomas, J. J., & Cook, K. A. (Eds.). (2005). Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society Press.
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets: Cambridge University Press.
Munzner, T. (2009). Visualization. Fundamentals of Graphics, Third Edition. AK Peters, 675-707.
Aggarwal, C. C., & Zhai, C. (2012). Mining text data: Springer Science & Business Media.Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: " O'Reilly Media, Inc.
Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting: principles and practice: OTexts: https://www.otexts.org/fpp/
Milhoj, A. (2013). Practical Time Series Analysis Using SAS: SAS Institute.
Saxena, R. & Srinivasan, A. 2013. Business Analytics: A Practitioner's Guide, Springer New York.
Articles Daveport, T. (2014). 10 Kinds of Stories to Tell with Data. Blog post at Harvard Business Review. http://blogs.hbr.org/2014/05/10-kinds-of-stories-to-tell-with-data/
Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), 662-679.
Tufekci, Z. (2014). Big Questions for Social Media Big Data: Representativeness, Validity and Other Methodological Pitfalls. Proceedings of the 8th International Aaai Conference on Weblogs and Social Media(ICWSM) 2014, Ann Arbor, USA, June 2-4, 2014.
Heer, J., Bostock, M., & Ogievetsky, V. (2010). A tour through the visualization zoo. Commun. ACM, 53(6), 59-67.
Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data analytics. interactions, 19(3), 50-59.
Slobogin, C. (2008). Government data mining and the fourth amendment. The University of Chicago Law Review, 317-341. |