English   Danish

2020/2021  KAN-CINTO1014U  Internet of Things

English Title
Internet of Things

Course information

Language English
Course ECTS 7.5 ECTS
Type Mandatory offered as elective
Level Full Degree Master
Duration One Semester
Start time of the course Spring
Timetable Course schedule will be posted at calendar.cbs.dk
Study board
Study Board for BSc/MSc in Business Administration and Information Systems, MSc
Course coordinator
  • Ben Eaton - Department of Digitalisation
Main academic disciplines
  • Information technology
Teaching methods
  • Face-to-face teaching
Last updated on 12-04-2021

Relevant links

Learning objectives
  • Understand strategic commercial drivers including IoT business ecosystems and business models
  • Understand the main technical concepts, models, and frameworks of the Internet of Things
  • Evaluate selected technical, ethical, privacy, and security issues related to the Internet of Things
  • Analyse, using different Internet of Things frameworks: Strategic and operational implications, user centered design, and technical challenges in particular related to form and function (of embedded, pervasive, and ubiquitous systems)
  • Assess pros/cons of different Internet of Things technologies and their applications
  • Design/develop (parts of) a technical Internet of Things solution such as an embedded data mining algorithm and/or hardware platform to solve a given relevant problem
Course prerequisites
Prior knowledge and understanding of the following is advantageous:
• Programming
• Distributed computing systems
• Technologies such as IP, HTTP, XML and JSON
• Data mining and big data algorithms
Examination
Internet of Things:
Exam ECTS 7,5
Examination form Oral exam based on written product

In order to participate in the oral exam, the written product must be handed in before the oral exam; by the set deadline. The grade is based on an overall assessment of the written product and the individual oral performance.
Individual or group exam Individual oral exam based on written group product
Number of people in the group 4-5
Size of written product Max. 20 pages
Assignment type Report
Duration
Written product to be submitted on specified date and time.
20 min. per student, including examiners' discussion of grade, and informing plus explaining the grade
Grading scale 7-point grading scale
Examiner(s) Internal examiner and second internal examiner
Exam period Summer
Make-up exam/re-exam
Same examination form as the ordinary exam
Students can submit the same project or they can choose to submit a revised project.
Description of the exam procedure

The Internet of Things exam is an individual oral exam based on a written group product, which concerns the commercial and technical aspects of an IoT solution that is developed as a group project using concepts taught in the course. 

Course content, structure and pedagogical approach

Main aim of the course
The basic technical idea of the Internet of Things is that virtually every physical thing in this world can also become a small computer that is connected to the Internet. When they do so, they are often called 'smart things', and these smart things use embedded data mining to achieve their goals. Students will gain advanced technical knowledge of key theories, algorithms, models, frameworks, and technical solutions of the Internet of Things. In business, the Internet of Things can also create new business models, improve business processes, enhance supply chains, and reduce costs and risks.  The student  will acquire specialised problem-solving technical skills, being able to analyse and design new solutions based on Internet of Things technology. They shall take responsibility to conduct design and implementation of new Internet of Things solutions both on the hardware side and on the software side.

Technology, tools, and platforms
Internet of Things involve a number of different technologies: Programming, RFID, NFC tags, Bluetooth devices, proximity/touch/temperature/light sensors, IPv6 network, Zigbee etc.

Description of the teaching methods
The course consists of 8 lectures, 1 tutorial and 6 exercise sessions.

The 8 three hour lectures are split equally into content which is focused on the commercial aspects of IoT and content which is focused on the technical aspects of IoT. Guest lecturers will also attend to supplement the taught material with their practical experience.

Over the length of the course students will develop an IoT proof of concept project in teams consisting of both a technical hardware instantiation of an IoT thing and the commercial proposition that accompanies it.

The students efforts will be supported in 6 four hour exercise sessions where they and their teams will receive hands on help and advice as they develop their proof of concept. Each exercise session will have a focus on a particular technical aspect of the IoT.

There will also be an additional practical tutorial session early in the course where an external company will come in and coach the students to build an example set of IoT instantiations.
Feedback during the teaching period
Office hours: Office hours will provide feedback to all the students who will discuss some aspects of the material in more depth.

During class: During class there are frequent group exercises which enable students to receive feedback on the course material and their progress concerning the group project assignment.

Workshops: The module features frequent workshops where the students receive feedback on their learning and progress concerning the group project assignment from the teacher. These workshops also allow students to present to the rest of the class for further peer feedback.

Mail: Students can (and do) send e-mail with questions and drafts of their assignments during the semester to get quick feedback on key questions or concerns.
Student workload
Lectures 24 hours
Prepare to class 100 hours
Workshops 19 hours
Exam and prepare 63 hours
Total 206 hours
Expected literature

The literature can be changed before the semester starts. Students are advised to find the final literature on Canvas before they buy the books.

 

Selected Chapters from the Following Literature (finalized on CBS Learn before the class starts):

 

  • Uckelmann, D., Harrison, M., & Michahelles, F. (2011). Architecting the Internet of Things, Springer.
  • Pedersen, R. U. & Pedersen, M. K. (2013). Micro Information Systems: New Fractals in an Evolving IS Landscape, IDG Global.
  • Chun-Wei Tsai, Chin-Feng Lai , Ming-Chao Chiang, Laurence T. Yang (2013) Data Mining for Internet of Things: A Survey, IEEE Communications Surveys & Tutorials, (16)1.
  • Coulouris, G., Dollimore, J., & Kindberg, T. (2011) Distributed Systems: Concepts and Design, 5th edition,  Chapter 19, Addison-Wesley
  • Other articles that supplement the main coursebook

 
Optional Reading List (finalized on CBS Learn before the class starts):

 

  • Porter, M. & Heppelmann, J. (2015). How smart, conected products are transforming industry. Harvard Business Review
  • Porter, M. & Heppelmann, J. (2014). How smart, connected products are transforming competition. Harvard Business Review
  • Students will also select additional litterature (approx. 10-20 academic articles) for their individual semester assignments.

 

Last updated on 12-04-2021