# 2023/2024  BA-BMECV1052U  Statistics

 English Title Statistics

# Course information

Language English
Course ECTS 7.5 ECTS
Type Elective
Level Bachelor
Duration One Semester
Start time of the course Autumn
Timetable Course schedule will be posted at calendar.cbs.dk
Max. participants 80
Study board
Study Board for HA/cand.merc. i erhvervsøkonomi og matematik, BSc
Course coordinator
• Mette Asmild - Department of Finance (FI)
• Statistics and quantitative methods
Teaching methods
• Face-to-face teaching
Last updated on 13-02-2023

Learning objectives
The basic objective of this course is to familiarize the students with the principles of probability theory and statistics. The student will acquire knowledge about what statistics and probability are and expand their experience base by applying a variety of probability and statistical principles in exercises and case studies. The goal is to enable the students to interprete and understand basic statistical concepts as they apply in business, economics, different types of companies or institutions and industries.

Following the course the students can:
• Identify key theories, models and concepts of probability and statistics.
• Use graphical and numerical methods for exploring and summarizing data on a single categorical or quantitative variable.
• Describe basic probability and how probability helps us understand randomness.
• Choose and justify appropriate descriptive and inferential methods for examining and analyzing data and drawing conclusions.
• Analyze the association between categorical, discrete, and continuous variables, using contingency tables, correlation, regressions, and analysis of variance.
• Communicate the conclusions and interpretations of statistical analysis.
Course prerequisites
None
Examination
Course content, structure and pedagogical approach

The course will, through lectures and exercises, cover:

• Descriptive statistics, both numerical and graphical.
• Statistical inference; estimator, confidence intervals and significance tests of hypotheses.
• Analysis of contingency tables.
• Regression analysis; simple, multiple and covariance analysis.
• One-way and two-way analysis of variance.
Description of the teaching methods
Lectures, exercises and computer classes.
Feedback during the teaching period
- Discussions with lecturer (and possibly teaching assistant) during lectures, exercises and computer workshops.
- Oral feedback is given collectively at the lectures based on student answers in live quizzes.
- Hands-on help with software (and with interpretations of results) during computer workshops.
- Final exam only assessed with a grade, with no personal feedback.
- Answer to exam paper will be made available on Canvas after the exam, enabling the students to compare their answers to the correct ones in order to understand the grade awarded.
 Attending lectures 28 hours Attending exercises 18 hours Attending computer (JMP) workshops 4 hours Attending exam 4 hours Preparation for lectures 30 hours Preparation for exercises 20 hours Preparation for JMP workshops 12 hours Revisions before exam 90 hours
Expected literature

Agresti, A., Franklin, C.A. and Klingenberg, B. (2018), "Statistics: The Art and Science of Learning from Data", Global Edition 4th Edition

ISBN-13: 978-1292164779
ISBN-10: 1292164778

Note that any older version of the book by Agresti & Franklin titled "Statistics: The Art and Science of Learning from Data" can just as well be used.

Supplementary notes

Last updated on 13-02-2023